“大数据”是指一组数据集非常庞大且复杂,以致于很难利用现有的数据库管理工具进行处理。它有助于统一大型数据集,并能够从分析中得出其它信息,而不是来自具有相同数据总量的单独的较小数据集。企业领导者已对此作出回应,CEO们是大数据倡议的头号支持者。在互联网极为发达的今天,大数据时代即将来领。本文重点介绍大数据时代下视频监控的新变革以及遭遇的新困境。
大数据时代来临,视频监控迎来新变革
因为大数据带来了很多现实中的难题,为了解决这些难题需要新的技术变革,需要新一代的数据库技术,业界称之为大数据技术。IDC这样定义大数据技术:大数据技术将被设计用于在成本可承受(economically)的条件下,通过非常快速(velocity)的采集、发现和分析,从大量化(volumes)、多类别(variety)的数据中提取价值(value),将是IT领域新一代的技术与架构的变革。Hadoop技术正是在此背景下诞生,历经数年的积累,Hadoop已成长为一个强大的生态系统,不但衍生出HDFS、HBase、Hive等多个子项目,成为IT领域广泛采用的大数据模型框架。
“除了上帝,任何人都必须用数据来说话”,美国著名管理学家、统计学家爱德华·戴明将数据提升到了和上帝平行的高度。视频监控业务正是一个典型的数据依赖型业务,依靠数据说话。可以说,大数据与视频监控业务有着天然的结合。综合来看,大数据与视频监控业务的结合主要体现在“存”、“看”、“用”上。
“闪存”:如果类比水库蓄水的方式,典型的网络视频监控数据存储模型是一个由小溪汇聚河流、再汇聚到水库的蓄水方式。小溪数量增多、水量增大是水库蓄水量的保证,然而传统方式下蓄水量增大将提高水库建造成本和蓄水安全的要求。而采用分布式蓄水模式,在河流中游建立多个中间蓄水池,不仅可以减少主水库蓄水压力和成本,化整为零也提高了就近用水效率。在大数据技术支撑下,网络视频监控数据存储模型可转向分布式的数据存储体系,提供高效、安全、廉价的存储方式。
“易看”:在视频监控业务中,错看漏看、来不及看等是常见的困扰点。大数据监控图像的回溯给许多安防监控管理人员带来了生理与心理的双重挑战。在大量人力投入的公安案件追溯中,都常常耳闻“看到吐”、“看到晕”等无奈和感叹。可想而知一般零售行业、金融行业等,对于视频监控图像的回溯就更为困难。在视频监控大数据趋势已经来临之际,依靠人眼去检索、查看所有视频图像数据已经不太现实。通过大数据技术实现视频图像模糊查询、快速检索、精准定位,让看变得简单迫在眉睫。